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The proliferation of sensors powered by state-of-the-art machine learning techniques can now infer context, recognize
activities and enable interactions. A key component required to build these automated sensing systems is labeled training
data. However, the cost of collecting and labeling new data impedes our ability to deploy new sensors to recognize human
activities. We tackle this challenge using domain adaptation i.e., using existing labeled data in a different domain to aid the
training of a machine learning model for a new sensor. In this paper, we use off-the-shelf smartwatch IMU datasets to train an
activity recognition system for mmWave radar sensor with minimally labeled data. We demonstrate that despite the lack of
extensive datasets for mmWave radar, we are able to use our domain adaptation approach to build an activity recognition
system that classifies between 10 activities with an accuracy of 70% with only 15 seconds of labeled doppler data. We also
present results for a range of available labeled data (10 - 30 seconds) and show that our approach outperforms the baseline in
every single scenario. We take our approach a step further and show that multiple IMU datasets can be combined together
to act as a single source for our domain adaptation approach. Lastly, we discuss the limitations of our work and how it can
impact future research directions.
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mobile computing systems and tools.
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1 INTRODUCTION

Researchers and developers often rely on sensors in smartphones [15, 26], smartwatches [39, 60], cameras [4,
25, 51], and even microphones [43, 59] to infer context, recognize user activities, and adapt to the user’s needs.
Recently, we have seen many activity recognition systems that rely on Doppler Effect-based mmWave radars
to measure activity movements [33, 44, 45]. An advantage of a mmWave radar is its ability to characterize fine-
grained motion. It has the ability to capture micro-motion dynamics of subtle activities (e.g., hand activities such
as brushing, eating etc.) captured via the micro-Doppler Effect [11]. A mmWave radar-based activity recognition
system also offers a higher degree of privacy preservation compared to other popular ambient sensors such as
cameras or microphones.
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These activity recognition and sensing systems are typically built using machine learning models that need
labeled, in-situ sensor data for training. These training labels typically rely on manual annotation or user
intervention to segment and label specific activities performed by users. This process introduces time and resource
constraints that impedes our ability to quickly deploy and use new doppler sensors. Moreover, the ground truth
collection (cameras, user intervention etc.) tends to be intrusive and may be unsuitable in scenarios with elevated
privacy constraints. While mass production of new hardware is an outstanding challenge [27], data collection
and labeling cost is one of the biggest challenges to use these new sensors to build an activity recognition
system. These systems need to work well out-of-the-box with no or very-little in-situ calibration. Ideally, the
machine learning models would not need any in-situ training, and ultimately facilitate easier deployability.

One method to overcome the challenge of data labeling cost is automated domain adaptation. Such approaches
rely on successful knowledge transfer from labeled data collected in one domain and use it to assist the training
of a model in a target domain with no (or limited) data of its own. Here, one popular approach has been to
use videos as the source domain [1, 8]. Videos provide a rich source of information with a considerable feature
space. Moreover, the extensive library of labeled video datasets make it an attractive choice for a source domain.
However, using videos as the source domain requires the full body of a human to be visible in the source videos.
The approach cannot handle occlusion or partial capture of the body. This limitation significantly reduces the
available video datasets that can be reliably used for domain adaptation.

In this paper, we present IMU2Doppler and evaluate the use of off-the-shelf inertial measurement units (IMU)
datasets as the source domain to build an activity recognition model for the mmWave radar sensor. IMU data does
not share the same limitations as videos. The uninhibited signal that captures the motion performed as a part of
the activity is rotation and environment invariant which makes it a good candidate as a source. Additionally,
IMU retains some of the advantages of video datasets i.e., prior works in activity recognition have extensively
collected IMU data for a gamut of activities and made it publicly available.

We demonstrate that IMU2Dopper can map the doppler data (input to the untrained ML model) to a latent
feature representation of the pre-trained IMU model. In addition to this representation of the IMU model, we
use minimally labeled (akin to a calibration step) doppler data to classify 10 activities of daily living. This novel
approach allows us to recognize these activities with an accuracy of 70% with only 15 seconds of labeled
data from the mmWave radar sensor. We acknowledge that this is not the performance we should expect from
a real world system. However, IMU2Doppler provides an out-of-the-box model that can benefit from a quick
personalization and calibration step. Our contribution lies in facilitating rapid development of a ‘good enough’
base model that can then be used with other techniques such as active learning [42] or meta-labeling [14] that
personalize to the user’s environment and improve over time without a need for significant data labeling.

In this work, we also demonstrate that we can combine multiple IMU datasets recorded in completely different
environments with different users as a unified source of training data. Typically, using multiple sources is a
significant challenge for domain adaptation due to the domain shift that exists across the sources. Zhao et al.
have summarized the numerous challenges of multi-source domain adaptation [63]. However, we show that
our approach is resilient to such issues. In fact, when we combine the training data from two IMU datasets,
IMU2Doppler demonstrated a small increase of 1% in recognition performance. From a practical perspective, it
means that not only any publicly shared IMU data can be used, but a user who wishes to record a completely
new activity may incur a one-time-cost, use an app on their smartwatch to collect IMU data for that activity, and
personalize the machine learning model. Moreover, if the user chooses to share their data of this new activity,
other users can leverage it to train their doppler sensor without incurring the same time and resource penalty.
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In summary, our contributions are as follows:

(1) An activity recognition system for 10 di erent activities using mmWave radar. Prior work has shown the
use of mmWave radar to capture gross movements. We include and expand the set of activities to include
subtle activities such as brushing teeth, folding laundse

(2) A novel multi-class heterogeneous domain adaptation approach that learns a feature mapping between
inertial sensors worn on a user's wrist and a mmWave radar sensor placed in the environment. It means
that our approach is viewpoint and translation invariant.

(3) While we are not the rst to use domain adaptation, our work is the rst approach that uses o -the-shelf
IMU dataset as the source domain to train a doppler sensor. It means that the source data was not only
collected on di erent users as the target domain, but also at a di erent time. We also show that we can use
muliple datasets and combine them as a single source to achieve the same results.

2 RELATED WORK

In this section, we rst brie y cover recent advances in activity recognition using doppler. Prior work in this area
shows the promise of the mmWave radar as a sensor for activity recognition. Next, we expand upon prior work
in domain adaptation with a focus on heterogeneity. This is a relatively new space with exciting prospects. We
discuss strategies adopted by prior work and how our work builds upon some of these ideas.

2.1 Doppler-based Activity Recognition

Radar sensors exhibit numerous advantages such as non-intrusiveness, high distance range, deep penetration,
accessibility, inability to sense personally identi able information and high signal delit§, [LO, 23, which

make them an appealing solution for human activity recognition. In the past, they have been used for vital
signs monitoring such as heart rate and breathing [31], gait patterns analysis [53], gesture sensing [22], person
tracking and identi cation [36, and distinguishing emotionsg2. The superior range resolution of mmWave
Radar sensors, which operate in the frequency range of 30GHz and 300GHz, has further enabled the recognition
of ne-grained human activities B3 45 50 5. For instance, Singh et al4f] used a voxelised representation

of sparse point-clouds from mmWave radar to detect ve activities. Zhang et&il] §onverted the point cloud

data into micro-Doppler spectrograms before using a CNN to classify multiple human actions in real-time.
Micro-doppler spectrograms present an e ective way to visualize both doppler and micro-doppler shifts. Over
the last decade, they have been extensively used for human activity recognition using radar in di erent contexts
[7, 18, 28, 57].

Most of the prior works have focused on large body movements only such as walking and jogging. And even
though some of these prior works have collected data for those large body movement based activities, the datasets
that are publicly available are sparse and do not contain enough activity labels. Therefore, despite the promise of
the doppler sensor, its utility is impeded by the data collection and labeling cost.

Next, we discuss how prior works have tackled the challenge of data labeling using domain adaptation. We
examine techniques not only for the doppler sensor but broadly for other modalities as well. We outline how
takeaways from some of these techniques ground our approach to build a doppler based activity recognition
system from domain adaptation of IMU data.
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2.2 Heterogeneous Domain Adaptation

Most prior work on domain adaptation assumes that data of di erent domains are of the same dimensionality
or are drawn from the same feature spacg B5 65. Speci cally for Human Activity Recognition (HAR),
previous works have proposed a range of techniques including self-supervision based unsupervised transfer
learning [40, few shot learning L9, substructure-level matching based domain adaptati@d][ adaptive spatial-
temporal transfer learning (ASTTLY[] and adversarial domain adaptation framework&4]. However, the
assumption of homogeneity may not hold for many applications. Consequently, recent work has witnessed a rise
in heterogeneous domain adaptation (HDA) techniques, which tackle the incongruity of source and target feature
spaces by mapping features into a common and closer subsgacBy], or exploiting the correlations between
features p], or directly transforming data from one domain to the othe2], 49. Although these approaches have
shown promising results, they still su er from challenges. While mapping features into a prede ned subspace
may lead to the loss of shareable information, feature translators which attempt to synthesize target data that
follows source domain distribution (or vice-versa) are domain-speci ¢ and often di cult to be constructed

in real-world applications. Moreover, most existing HDA methods simply learn multiple binary classi ers by
adopting a one-vs-rest strategy to achieve multi-class classi cativg [L7, 57. This hinders the full exploration of

the underlying structure among multiple classes in the target domain. While there has been exploration of domain
adaptation for human activity recognition, we speci cally focus on cross-domain adaptation approaches. Our
work in particular looks at using di erent source and target domains. An additional layer of heterogeneity comes
into play when the source and target domains belong to di erent modalities. Cross-modal domain adaptation
approaches have succeeded in transferring knowledge between modalities like vision and sshutect{ and
vision [2], vision to inertial data P9 3§ and inertial signals to video%5. These techniques rely on using a
higher dimensional modality to train an activity recognition model in a lower dimensional target domain. Even
though these approaches work well, they are limited by their need for paired, synchronous instances in both
domains €.9.]55). Despite this limitation, there are some key takeaways from these proposed techniques. Most
importantly, it is possible to robustly transfer knowledge between two di erent modalities/domains by learning

a shared latent representation. In fact, some of these works were even able to use lower dimensional modalities
such as IMU to knowledge transfer onto a higher dimensional modality such as videos.

Next, we focus speci cally on what are perhaps the closest prior works to our problem. The following techniques
have used di erent modalities to train the doppler sensor for learning human activities. Vid2Dopglearid Cai
et al's work in RF sensingg uses videos, detects and tracks humans in them, reconstruct a 3D mesh and use
them to generate a synthetic signal that can be used to train the doppler sensor. In fact, these approaches have
been shown to work robustly and accurately without the need fabeledpaired synchronous data. However,
they have a severe limitation. The use and reconstruction of 3D human pose means that the videos that can be
used as a source need to have full human body visible without any occlusion. This signi cantly reduces the size
of publicly available labeled datasets that can be used by these two approaches.

Another very successful approach to reduce the data labeling cost for the doppler sensor uses audio as a source
modality to teach the doppler senso4§. This approach converts the doppler spectograms into pseudo-audio
representations using a GAN and then uses a pre-existing sound classi er to classify activities. This approach is
an improvement over other approaches since it is neither limited by signal occlusion issues, nor does it require
paired synchronous samples. However, the system still requires a larger amount of initial data to build a model
that can convert the doppler spectogram into its pseudo-representation. They used a dataset of 1109 spectograms
across six activities where each spectogram with each sample collected over a period of 5 seconds. Again, the
data labeling cost for a wide range of activities inhibits the use of this approach.

Based on our learnings from prior work, it is clear that generating synthetic data or pseudo-representations
may perform better in some scenarios, but it has severe limitations. Therefore, in our work, we build on the
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idea of a shared latent feature subspace that shares the knowledge of the source domain while also preserving
the target domain characteristics. We achieve the same using a minimal, asynchronously labeled target dataset
which is modeled by a multi-objective optimization learning approach that simultaneously constrains the domain
confusion and multi-class classi cation loss, thus overcoming the majority of the challenges outlined in this
section.

3 ALGORITHM

IMU2Doppler is a transfer learning-assisted ambient sensing system that uses mmWave radar sensors to detect
and distinguish between a set of activities of daily living with minimal labeled data. To account for the lack of
labeled radar data, we implement a multi-objective optimisation technique that uses domain adaptation. It uses a
neural network pre-trained on inertial measurement data from multiple datasets speci cally curated for the task

of activity recognition. Below, we describe our sensing principle and algorithm in detail.

3.1 Sensing Principle

Millimeter-wave (mmWave) radar sensors transmit pulses of electromagnetic energy and receive re ections
when obstructed by rigid targets in the environment. By exploiting the Doppler E ect, it is possible to measure
certain motion characteristics of the target like its relative velocity, angle of arrival and distance to the radar
system. While the Doppler e ect arises from the bulk motion of the target, micro-motion dynamics of the target
or its structure such as vibration, rotation, tumbling and coning motions induce thiero-Doppler E ecf11].

For instance, in case of a moving person, the arms and legs act as independent elements in rtiGnce

the intensity of the micro-Doppler e ect is dependent on the velocity and direction of the motion, individual
movements of the target with discernible motion characteristics produce distinct micro-Doppler signatures,
which can be used for human activity recognition [7, 61].

We collect the synthetic aperture radar (SAR) data from the doppler sensor and used the azimuth-range-doppler
algorithm to parse the continuous data. As shown in Figure 1, the images corresponding to di erent activities
represent distinct patterns. These patterns can be modeled and recognised by appropriate learning algorithms, as
described in the following sections.

3.2 Knowledge Transfer

Machine learning algorithms show exceptional predictive power in a range of HAR ta8ks2h, 30 37 but

require an abundance of annotated data. Although such labeled data exists for a number of sensing modalities,
the newfound promise of doppler radar sensing is limited by the lack of a su ciently large labeled dataset. To
solve this problem, we use transfer learning, speci cally domain adaptation, wherein we can leverage neural
networks trained on a su ciently large dataset of a di erent but related modality (source domain) to accelerate
the learning of micro-doppler signatures (target domain).

The accelerometer data captured by a wearable inertial measurement units (IMU) characterizes similar motion
characteristics as that of a doppler sensor. It captures an environment and position invariant snapshot of the
motion of human movement. We postulate that this characteristic of IMU makes it a suitable candidate for source
domain. Besides heterogeneous domain adaptation across two di erent modalities, we also use o -the-shelf
datasets to demonstrate that the same events do not need to be recorded synchronously for knowledge transfer
across di erent modalities.

For knowledge transfer, we propose a supervised, cross-modal domain adaptation approach that maps the
input of the untrained doppler model to the shared latent feature representation of the pre-trained IMU model.
Further, to preserve the information about the target domain or doppler data, we adopt multi-task learning to
simultaneously minimise the domain discrepancy (between the latent representation of the two modalities) along

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 145. Publication date: December 2021.



145:6 © Bhallaetal.

Fig. 1. Corresponding Doppler and IMU signals for various activities.

Proc. ACM Interact. Mob. Wearable Ubiguitous Technol., Vol. 5, No. 4, Article 145. Publication date: December 2021.



IMU2Doppler: Cross-Modal Domain Adaptation for Doppler-based Activity Recognition Using IMU Ddta 145:7

with the classi cation loss (between the predicted and actual target label). This multi-objective optimisation
ensures that the underlying structure of the target data is retained even in the latent feature subspace. The
rationale for our approach is rooted in the observation that task-speci ¢ and domain-invariant semantic features
can be better associated with the higher layers (close to the output side) of a netvi@tkThis observation
allows us to opt di erent neural architectures that are best suited for each modality, with the constraint of having
identical fully connected layers that are responsible for producing the shared latent feature representation.

3.3 IMU: Data Processing and Neural Architecture

We use the "WISDM Smartphone and Smartwatch Activity and Biometrics Dataséttr training an activity
recognition classi er with inertial data. The dataset was collected from the accelerometer and gyroscope sensors
on both the smartwatch and smartphone of a total of 51 users. It consists of 18 unique activities, ranging from
basic ambulation like walking and jogging to other activities of daily living like eating and drinking. For the
purpose of our work, we chose a subset of 10 activities for evaluation, as listed in Figure 1. We chose these
activities based on their suitability for detection with doppler sensor. For example we did not include activities
such as kicking a soccer ball or two other di erent eating related activities (sandwich, chips). We also excluded
activities that do not include any motion such as sitting.

The four streams of data, namely phone accelerometer, phone gyroscope, watch accelerometer and watch
gyroscope, are each recorded at a sampling rate of 20 Hz. For our purpose, we consider only the smartwatch
accelerometer data since smartphone sensors (placed in the user's pocket) fail to capture hand-oriented/upper
body movements. Further, we didn't observe a signi cant increase in the performance ef on adding
smartwatch gyroscope data. Thus, to reduce training overhead and eliminate the requirement of another stream
of data for performing the subsequent domain adaptation, we limited our evaluation to smartwatch accelerometer
data. We segment the raw watch acceleration data using a sliding window of size 5 secs and an overlap of 2.5 secs.
The extracted tri-axial frames are reshaped into 3-channel windows with a length of 100 samples (input size:
100 3) that are ready for classi cation.

3.3.1 IMU Model Selectiofo assess the discriminability of the activities in the source domain, we evaluate the
performance of a set of deep neural networks including 1D CNN (5 Convolutional Units, each consisting of a
Convolutional layer, a Batch Normalisation layer and a Max Pooling layer), LSTM (2 LSTM layers, Units: [128,
256]) and Bidirectional-LSTM (1 Bi-LSTM layer, Units: 128). One fully-connected layer (Units: 128) and the nal
output layer were added at the end of each model. The networks were trained from scratch with Adam optimizer
(Learning Rate: 0.01) coupled with a learning rate decay of 0.1 (to check for the saturation of validation loss). We
use the Categorical Crossentropy loss function to optimise the outputs of the nal layer, which uses the Softmax
activation to classify activities. We used Keras [12] and Python to implement and train these models.

Table 1. Classification results of di erent models on a subset of WISDM Dataset (10 activities)

Model  Trainable Parameters Accuracy SD

1D CNN 453,002 79.163.35
LSTM 496,010 80.672.92
Bi-LSTM 169,354 83.34 4.23

We followed a subject-independent scheme for evaluation and split the dataset into 5 folds of 10 subjects each.
Each train-test split resulted in approximately 28.4K training instances and 7.8K test instances. Table 1 provides
the classi cation performance of all the models along with their total number of trainable parameters. We found
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